Riemann Sums

1. TRUE False Definite integrals are shorthand for Riemann sums.

Solution: Definite integrals are just a way for us to succinctly write a limit of Riemann sums.
2. TRUE False The jumping constant definite integral law comes from the corresponding limit law.

Solution: Since definite integrals are just limits of Riemann sums, the laws are derived from limit laws.
3. True FALSE A limit of Riemann sums depends on what method we use (Left endpoint, etc.).
4. TRUE False The second derivative can tell us if the midpoint rule gives an over/under estimate.

Solution: If the second derivative is always positive, then the midpoint rule gives an overestimate, and if the second derivative is always negative, the midpoint rule gives an underestimate.
5. Express $\lim _{n \rightarrow \infty}\left[\frac{2^{2}}{n^{2}}+\frac{2 \cdot 2^{2}}{n^{2}}+\cdots+\frac{2^{2} n}{n^{2}}\right]$ as a definite integral from 0 to 2 .

Solution: If we divide up the interval of [0,2] into n intervals, then each subinterval is of length is $\frac{2-0}{n}=\frac{2}{n}$. Using right endpoints, the first term is $\left(\frac{2}{n}\right) \cdot \frac{2}{n}$ and hence we see that $f(x)=x$. Thus, this limit is

$$
\int_{0}^{2} x d x
$$

6. Express $\int_{0}^{3} \cos ^{2}(x) d x$ as a limit of right endpoint Riemann sums.

Solution: We split up the interval $[0,3]$ into n intervals which are each of length $\frac{3-0}{n}=\frac{3}{n}$. We start at 0 and end at 3 to get $[0,3 / n],[3 / n, 6 / n], \ldots,[3-3 / n, 3]$. Using the right endpoint method, we have that the integral is the limit

$$
\lim _{n \rightarrow \infty}\left[\cos ^{2}(3 / n) \cdot \frac{3}{n}+\cos (6 / n) \cdot \frac{3}{n}+\cdots+\cos (3) \cdot \frac{3}{n}\right]=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \cos ^{2}\left(\frac{3 i}{n}\right) \cdot \frac{3}{n}
$$

FTC

7. TRUE False The crown of calculus is the fundamental theorem of calculus.
8. TRUE False FTC I gives us an easy way to explicitly calculate definite integrals.

Solution: FTC I tells us that if F is an antiderivative of f, then $\int_{a}^{b} f(x) d x=$ $F(b)-F(a)$, so we don't need to calculate a limit of Riemann sums.
9. TRUE False $\int_{a}^{x} e^{t^{2}} d t$ is an antiderivative of $e^{x^{2}}$.

Solution: This is true by FTC II. The derivative of $\int_{a}^{x} e^{t^{2}} d t$ is $e^{x^{2}}$ by FTC II. But, there is no way to write it in terms of elementary functions.
10. True FALSE FTC I and FTC II are not related.

Solution: Let $F(x)$ be an antiderivative of $f(x)$. By FTC I, we have that $\int_{a}^{x} f(t) d t=$ $F(x)-F(a)$ and hence $\frac{d}{d x} \int_{a}^{x} f(t) d t=\frac{d}{d x}(F(x)-F(a))=F^{\prime}(x)=f(x)$, which "proves" FTC II.
11. Find an antiderivative of $e^{e^{x^{2}}}$ with $F(0)=1$ (not necessarily in elementary functions).

Solution:

$$
F(x)=\int_{0}^{x} e^{e^{t^{2}}} d t+1
$$

satisfies the condition because $F(0)=0+1$.

U-Substitution/Integration by Parts

12. True FALSE When integrating by parts, choosing different functions for u and $d v$ (assuming both work out), will give different answers.
13. TRUE False It is always good to u sub first in order to simplify the integral.

Solution: This is true and u subbing first will make your life a lot easier.
14. Find $\int_{0}^{1} \sqrt{1-\sqrt{x}} d x$.

Solution: We guess that $u=\sqrt{1-\sqrt{x}}$ and hence $u^{2}=1-\sqrt{x}$ so $\sqrt{x}=1-u^{2}$ and $x=\left(1-u^{2}\right)^{2}=u^{4}-2 u^{2}+1$. Thus, we have that $d x=\left(4 u^{3}-4 u\right) d u$. When $x=0$, then $u=\sqrt{1-0}=1$ and when $x=0$, then $u=\sqrt{1-\sqrt{1}}=0$. Thus

$$
\begin{aligned}
\int_{0}^{1} \sqrt{1-\sqrt{x}} d x=\int_{2}^{0} u\left(4 u^{3}-4 u\right) d u & =\frac{4}{5} u^{5}-\left.\frac{4}{3} u^{3}\right|_{1} ^{0}=(0-0)-\left(4 / 5 \cdot 1^{5}-4 / 3 \cdot 1^{3}\right) \\
& =\frac{4}{3}-\frac{4}{5}
\end{aligned}
$$

15. Find $\int x^{5} e^{x^{3}} d x$.

Solution: We guess that $u=x^{3}$ and so $d u=3 x^{2}$. So $x^{5} e^{x^{3}}=x^{3} / 3 e^{u} d u=u / 3 e^{u} d u$ so

$$
\int x^{5} e^{x^{3}} d x=\int \frac{u e^{u}}{3} d u
$$

We use integration by parts to get that this is equal to

$$
\frac{u e^{u}-e^{u}+C}{3}=\frac{x^{3} e^{x^{3}}-e^{x^{3}}}{3}+C .
$$

Numerical Integration

16. True FALSE Numerical approximations are just approximations, and never the exact answer.

Solution: Any approximation for a constant will give the exact answer.
17. TRUE False Simpson's method will approximate cubics exactly.

Solution: The error bound is given by K_{4}, which is the maximum of the fourth derivative. Since the fourth derivative of cubics is 0 , the error is 0 .
18. True FALSE When calculating K_{1} of $f(x)$ on $[a, b]$, we have that K_{1} is the maximum of $\left|f^{\prime}(a)\right|$ and $\left|f^{\prime}(b)\right|$.

Solution: K_{1} is the maximum of $\left|f^{\prime}(x)\right|$ on the interval $[a, b]$, which may not occur at the endpoints.
19. How many intervals do we need to use to approximate $\int_{1}^{4} \ln x d x$ within $0.001=10^{-3}$ using Simpson's rule?

Solution: We have that $E_{S}=\frac{K_{4}(b-a)^{5}}{180 n^{4}}$ and $(\ln x)^{(4)}=\frac{-6}{x^{4}}$ so $10^{-3}=\frac{6(3)^{5}}{180 n^{4}}$ so $n \geq$ 9.49. So the minimum number is $n=10$.

Differential Equations

20. TRUE False We can determine the behavior of solutions of a differential equation without explicitly solving for them.

Solution: We can by finding steady states and going from there.
21. The rate at which an animal loses heat is proportional to its surface area $\left(L^{2}\right)$. If the amount of heat an animal has is proportional to its volume $\left(L^{3}\right)$, write this as a differential equation in terms of heat H.

Solution: We know that $\frac{d H}{d t}=-k L^{2}$ and $H=C L^{3}$. So solving for L gives us $L=\sqrt[3]{H / C}$ and $L^{2}=D \sqrt[3]{H^{2}}$, for another constant D. Combining this with the previous equation gives $\frac{d H}{d t}=-k D \sqrt[3]{H^{2}}=-K \sqrt[3]{H^{2}}$ for some constant K.
22. The rate at which a person grows is proportional to his current height multiplied by his maximum height L minus his current height. Write this as a differential equation.

$$
\begin{aligned}
& \text { Solution: } \\
& \qquad \frac{d H}{d t}=k H(L-H) .
\end{aligned}
$$

Separable Equations

23. True FALSE When solving a separable equation, if we get that $y d y=x d x$, then the solution is $y=x+C$.

Solution: Solving gives $y^{2} / 2=x^{2} / 2+C$ and multiplying by two and square rooting gives $y=\sqrt{x^{2}+2 C}$, which is not the same as $y=x+C$.
24. TRUE False When solving a separable equation, we need to put the $+C$ immediately after integration.

Solution: This is true. We cannot wait to place the $+C$ at the very end because this will give the wrong solution.
25. Find the general solution to $\frac{d y}{d x}=e^{x-y}$.

Solution: We have that $e^{x-y}=e^{x} / e^{y}$ and hence

$$
e^{y} d y=e^{x} d x \Longrightarrow e^{y}=e^{x}+C \Longrightarrow y=\ln \left(e^{x}+C\right) .
$$

Note that this is not the same as $y=x+C$.

Improper Integrals

26. True FALSE We can compare an integral to $\int_{1}^{\infty} 1 / \sqrt{x} d x$ in order to show it converges.

Solution: The given integral diverges and hence cannot be used to show an integral converges.
27. True FALSE We can compare an integral to $\int_{1}^{\infty} 1 / x^{2} d x$ to show it diverges.

Solution: The given integral converges and hence cannot be used to show that another integral diverges.
28. True FALSE Since $x<x+1$, we have that $\infty=\int_{1}^{\infty} \frac{1}{x} d x \leq \int_{1}^{\infty} \frac{1}{x+1} d x$ so the latter integral diverges.

Solution: When we take reciprocals, we need to switch the sign so we actually get $\infty \int_{1}^{\infty} \frac{1}{x} d x \geq \int_{1}^{\infty} \frac{1}{x+1} d x$ so we don't have any information on if the latter integral converges or not. It does in fact diverge but we need to show that a different way.
29. Calculate $\int_{-\infty}^{\infty} \frac{1}{1+(x-1)^{3}} d x$.

Solution: We have to split up the integral first but it doesn't matter where we do so. We choose $x=1$ for simplicity.

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{1}{1+(x-1)^{2}} d x=\int_{-\infty}^{1} \frac{1}{1+(x-1)^{2}} d x+\int_{1}^{\infty} \frac{1}{1+(x-1)^{2}} d x \\
=\lim _{t \rightarrow-\infty} \int_{t}^{1} \frac{1}{1+(x-1)^{2}} d x+\lim _{r \rightarrow \infty} \int_{1}^{r} \frac{1}{1+(x-1)^{2}} d x=\left.\lim _{t \rightarrow-\infty} \arctan (x-1)\right|_{t} ^{1}+\left.\lim _{r \rightarrow \infty} \arctan (x-1)\right|_{1} ^{r} \\
=\arctan (0)-\arctan (-\infty)+\arctan (\infty)-\arctan (0)=\pi / 2-(-\pi / 2)=\pi .
\end{gathered}
$$

Histograms

30. True FALSE The height of each bar of a histogram represents the percentage of people that fall under that bin.

Solution: The area of each bar represents the percentage, not the height.
31. TRUE False The bars of a histogram can have a height greater than 1.

Solution: If all of the data falls within an interval of 0.1 , then the height of that bar is $1 / 0.1=10$.

PDFs/CDFs

See Worksheet 28.

